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Abstract. The analysis of elastic scattering experiments is considered for the case of crystals 
with lattice dislocations present. It is shown that somedislocations (known as partial dislocations. 
or Shockley partials) may give rise to a systematic change in the integntd intensities of Bra= 
reflections. These changes may involve additional atomic positions in the smcture. A theory 
is developed for the description of the average intensity of a Bragg reflection for crystals with 
partial dislocations present. The example of Ni$n in its hexagonal configuration is discussed. 

1. Introduction 

The investigation of a periodic arrangement of atoms in crystalline solids by coherent scat- 
tering is well established and is routinely used for structure determination. Measurements 
of Bragg intensities enable detailed information to be obtained concerning the arrangement 
of atoms. When analysing the Bragg intensities for obtaining structural parameters, devia- 
tions from perfect periodicity need to be accounted for. Effects such as the thermal motion 
of the atoms, chemical or isotopic (for neutron scattering experiments) disorder are easily 
taken into account [ M I .  Chemical disorder mainly affects the integrated Bragg intensi- 
ties through the effective scattering amplitude, and if different species become chemically 
ordered new Bragg peaks may occur such as satellites or superlattice reflections. 

In this paper attention will be focused on one particular type of non-periodicity in solids. 
It is concemed with the perturbation of the perfect lattice due to the presence of dislocations. 
The influence of dislocations on Bragg intensities is to some extent similar to the effects of 
stacking faults. In certain systems stacking faults occur affecting the phase relationship in the 
coherent scattering cross section, giving rise to a change in Bragg intensities. The question 
of how didocations influence the intensity, position and the shape of Bragg reflections in 
structure determination experiments has been discussed in the literature [5-81. However, 
since it has been generally expected that a random arrangement of dislocations in a solid 
does not affect the Bragg peak intensities this question has not been extensively discussed 
in the literature. Consequently there have been no reports of a study of dislocations by 
coherent Bragg reflection. However, diffuse and small-angle scattering have been used 
extensively [9] for the investigation of deformed solids. 

Here the question is addressed of how the presence of dislocations influences 
experiments concerned with structure determinations. Experimentally it is the integrated 
Bragg intensities which form the basis for a structural refinement. Therefore it is not the 
primary aim to discuss the more involved question of how the shape and the position of 
Bragg reflections change if lattice deformations are present in the sample (this question has 
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been discussed elsewhere; see e.g. Cullity IS]). Rather the discussion will be limited to 
the effects of dislocations on the integrated Bragg intensities. It should also be noted that 
experimentally only the relative intensities of Bragg reflections are of importance. This is 
due to the fact that experimental determinations of absolute intensities are rare, and more 
frequently an overall scale factor is taken as an adjustable parameter in the refinement of 
structural data. 

After a brief introduction to dislocations it will be shown that the presence of a random 
arrangement of dislocations is capable of systematically modifying the intensities of Bragg 
reflections. The major part of changes in Bragg reflection intensities is shown to arise due 
to a change of the average symmetry of the unit cell. This topic will be discussed more fully 
below. However, lattice distortions caused by the presence of dislocations will also affect 
the size of those regions which are capable of coherent scattering. These effects are readily 
accounted for in the experimental analysis of the data, and they can thus be removed. The 
interest here is focused on the analysis of the integrated Bragg intensities as determined 
by the square of the nuclear structure factor and the intensity change brought about by the 
presence of partial dislocations. As shown in more detail below the partial dislocations are 
capable of admixing different atomic layers with the result that the symmetry of the average 
unit cell is changed. The theory is also illustrated with an example by applying the model 
to the hexagonal phase of the compound NijSn. 

2. A brief introduction to dislocations and partial dislocations 

The theory of dislocations is a topic which has been extensively dealt with in the literature 
[10-12]. A comprehensive discussion of both experimental and theoretical aspects of a 
wide range of dislocation phenomena is given in the series edited by Nabarro [9]. 

This brief introduction to dislocations is limited to illustrating those aspects of the theory 
of dislocations which are relevant for the discussion of their influence on the intensities of 
Bragg reflections. The creation of a screw or an edge dislocation is illustrated in figure 1 
and figure 2. In general a dislocation will have both characteristics, but it suffices to discuss 
the pure screw and edge dislocations. The formation of a screw dislocation is illuslrated 
for an A-B layered crystallographic structure in figure 1. Figure 2 shows the various steps 
in the formation of an edge dislocation. 

In order to introduce a dislocation into an infinite, perfect crystal a cut is made along a 
semi-infinite plane as indicated in figures I@) and 2(a). Then the material at both sides of 
the cut is displaced in opposite directions such that the total relative displacement (known as 
the Burgers vector b of the dislocation) is an integer multiple of the A-B plane separation. 
Then the two sections are rejoined together and all atoms are allowed to relax to new 
equilibrium positions. 

For each dislocation two different possibilities exist for joining the layers. These are 
shown in figures I(b) and l(c) for the screw dislocation and in figures 2(b) and 2(c) for the 
edge dislocation. However, the interface energy at the cut will be minimized if like layers 
are joined at both sides. Thus for an infinite lattice it is the displacement by a full lattice 
translation which is favoured energetically. 

The matching of different layers results in a region of mismatch. The region is given by 
a misfit surface which is created by the cut in the crystal. The surface of mismatch between 
layers gives rise to a positive energy contribution and no matter how small this surface 
energy is, for a semi-infinite cut the total surface energy of the cut will become infinitely 
large and thus be energetically unfavourable. Therefore a single dislocation should always 
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Figure 1. Various stages during the formation of a 
screw dislocation. (a) shows a section of an infinite 
and perfect crystal, The crystallographic smcture is a 
sequence of A (dark spheres) and B (hollow spheres) 
layers. A semi-infinite cut is made in a suitable 
crystallographic plane as indicated by a line in (a). 
Then the material at both sides of the cut is displaced in 
opposile directions. Rejoining the parer at the inkdace 
one obtains the hvo different configurations as shown 
in (b) and (c). 

Figure 2. An edge dislocation is obtained h m  a 
perfect infinite crystal by first cutting the crystal along 
P semi-infinite plane zw indicated in (0). Then the 
toms at both sides of the cut are displaced in opposite 
directions. For a relative displacement of half a lattice 
vector (2 A-B plane separation) the configuration in (b )  
i s  obtained. A full latlice mslation (corresponding to 
twice the A-B plane separation) the arrangement shown 
in (e) is found. 

be described by a Burgers vector which corresponds to a lattice @anslation and no regions 
of mismatch (i.e. an A layer linked to a B layer) should occur in the crystal. 
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However, it was first demonstrated by Shockley [13] that a dislocation with a full 
lattice translation Burgers vector may separate into two partial dislocations according to the 
equation 

b + b i f b i .  (1) 

In this dissociation of one dislocation into two single ones the Burgers vector is a conserved 
quantity. Thus the equation b = bl + bz must hold. When a screw or edge dislocation 
with the smallest possible lattice translation dissociates into two separate dislocations, the 
Burgers vectors b,  and 62 will not correspond to full lattice translations. For this reason 
the two resulting dislocations are called partial dislocations. 

The interaction between the two partial dislocations is usually repulsive, driving both 
dislocations apart. The point of interest for the following discussion is the fact that in 
the process of separating two partial dislocations, an area of misfit is created. This misfit 
interface is bounded by the partial dislocations. The region of misfit has the appearance 
locally of a translation twin (see figures 3 and 4). The relative displacement is given either 
by the Burgers vectors of the partial dislocations, i.e. either bl or ba. 

Fire 3. The dissociation of a screw dislocation which 
is characterized by n full lattice hanslalion vector results 
in lwo dislocalion lines with Burgers vectors which 
do not correspond IO a full lattice translation. The 
dislcmtion lines repel one another. creating an nrea of 
mismatch as they separate. The area of mismatch is 
bound by the two partial dislocation lines. 

Figure 4. The dissociation of an edge dislocation 
results in two Shockley partials which are joined by 
an inlerface where A and B layers are joined lo one 
another, In equilibrium. the energy reduction due to 
the separation of the partial dislocations is balanced by 
the surfnee energy needed for the creation of the surface 
of mismatch. where A and B layers are joined to one 
another. 

It is thus appropriate to describe the effect of the misfit interface on the average nuclear 
smcture factor in terms of a translational twinning operation. This translation symmetry is 
not a proper symmetry operator of the crystallographic space group, because the Burgers 
vectors of the partial dislocations are not lattice translations. But the admixture of such 
a symmetry element into the average crystallographic structure will change the overall 
symmetry and thereby also the intensity of Bragg reflections. The twinning translation is 
not a proper symmetry operation of the lattice, and in order to make this distinction it will 
be referred to as a pseudosymmetry operation. 
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3. Bragg scattering 

An introduction to the theory of x-ray scattering can be found in Warren [3], and for an 
exposition of the theory of neutron scattering the books by Squires [ 11 or Lovesey 121 can 
be consulted. 

Bragg scattering is by its very nature elastic scattering without an energy transfer 
between the probing particle and the system under investigation. The elastic scattering 
cross section can be written as 

du - = N 
dQ 

IF(k)lzS(k - r). 
T 

Here r is a reciprocal lattice vector, N the total number of unit cells in the target and F(k)  
is known as the nuclear shucture factor defined as 

~ ( k )  = Cbjexp(-W(k)k’)exp(ik .R,) (3) 
j 

where exp(-W(k) . k2) is the Debye-Waller factor, which may be anisotropic. The 
summation in (3) i s  carried out over all atoms of the unit cell. 

The nuclear structure factor reflects the symmetry of the crystallographic shucture. 
Following the notation of Rae 11.51 let (0,t) denote a symmetry element This operator 
is composed of a point group operation 0 and a translation 1. The action of (0, t )  on 
a position vector r will result in (0, t)r = Or + t and thus the structure factor will be 
transformed according to the equation 

( O , t ) F ( k )  = =exp(i . t ) F ( O - l k ) .  (4) 

For (0, t) being a symmetry element of the crystallographic space group the transformed 
atom positions will coincide with the original location of atoms in the crystallographic 
structure. As a result F ( k )  = F S , ~ ( ~ ) .  

However, for an operator (0, t) which is not a symmetry element of the space group 
the transformed atomic positions are expected to be different from the original ones. For 
such a case F ( k )  # F&(k) and in general (0, t )  transforms atoms from location r to new 
positions in the average unit cell as determined by Or + t. 

For a translational twinning operation the operator ( 0 , t )  simplifies to 0 = 1 where 
1 is the identity operator of the crystallographic point group and t is equal to one of the 
partial Burgers vector b1 or bz. As pointed out above (1 ,  b l )  and (1, bz) are not symmetry 
operations of the crystallographic lattice. Rather they have to be thought of as forming a 
cyclic group of partial translations (modulo a lattice translation) of order n with elements 

( l , o ) , ( l . b t ) ,  ..., ( l . ( n -  Wl).  (5) 

In general (1, b l )  = (1, bz)-I (up to a lattice translation) and the translation element of the 
Burgers vector b, or b2 can be considered as the inverse operator of the other. 

Combining these operators with the group G of crystallographic symmetry operations 
one obtains the total symmetry group G,,, as 

Gtot = G + ( l , b l ) G + ( 1 , 2 6 1 ) C + . . . + ( l , ( n -  1)bl)G. (6) 
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As a result of the increase in the number of symmetry elements of the nysta l  the nuclear 
structure factor is changed according to 

(7) 
The effect of the twinning on the average structure factor of the crystal will depend on the 
details of the splitting of a full dislocation into partial dislocations, which in turn determines 
the size of the misfit region and the extent of the stacking fault. In order to discuss the 
effects of these stacking faults the cases of a large and a small separation of the partial 
dislocations are discussed in turn. 

First the partial dislocations are taken to be far apart from one another. Under these 
circumstances the effects due to the finite size may be neglected and an average structure 
considered which is characterized by stacking faults. 

The twinning which occurs in crystals due to the presence of dislocations is essentially 
restricted to displacements by 61 and -61. As both displacements occur with the same 
probability one is led to consider a structure factor of the average structure given by 

K-U Neumnn and K R A Ziebeck 

&(k) = F(k) + exp(i .b,)F(k) + ’. , + exp(i(n - I)k , bl)F(k) .  

Fdis(k) = ( l -2P)F(k)+P( (17  .Ub1)+(1? --CLbI))F(k) = (1-2~)F(k)+2~cos(k.b1)F(k). 

(8) 
Here p determines the degree of admixing the various layers due to the presence of partial 
dislocation induced stacking faults. 

For the intensity of Bragg reflections this results in an additional scattering vector 
dependence and in a modulation of the scale factor. However, it is pointed out that only 
those Bragg reflections with a non-zero structure factor are affected. Thus the scattered 
intensity may be written as 

with ~ ( k )  = ((1 - 2 p )  + 2pcos(k bl))’. 
In order to illustrate finite size effects consider a structure which is given by a sequence 

of A and B layers. Let the A and B layers be related to one another by inversion symmetry: 
with the structure factor F ( k )  = FA@) + the inversion symmetry will ensure that 
F ( k )  is real (due to F,(k) = F;(k)). The inversion symmetry element will also link the 
displacements in the average structure of the A and B layer, i.e. it will link exp(ik . b l ) F ~ ( k )  
with exp(-ik -bl)F~(k) (type I) and exp(-ik . b l ) F ~ ( k )  with exp(ik -bl)F,(k) (type 11). In 
general both configurations will have different energies at the interface, as a result of which 
the probability of their occurrence in the interface will differ. As the partial dislocations 
separate in order to minimize their interaction energy the mismatch interface created by 
this separation is found to be composed of alternating layers of type I and type II. The 
interface energy is minimized if the lower energy configuration is the end configuration of 
the mismatch area. Thus an unequal number of type I and type II configurations are found 
in the interface. While this difference is unimportant for a large separation of the partial 
disclocations its effect is more significant for a small separation of the partial dislocations. 
Writing 

exp(i . b l ) F ~ ( k )  +exp(-ik .b l )Fg(k)  

= cos(k . bl)(FA(k) + Fe@))  + isin(k -bl)(F~(k) - Fa(&)) 

= cos(k .bl)(F~(k) + FB(~)) - isin(k *bi)(F~(k) - F B ( ~ ) )  

(104 

(W 
exp(-ik . b , ) F ~ ( k )  +exp(ik . bl)FB(k) 
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it is seen that an equal number of type I and type II configurations makes the ( F A ( ~ ) - F ~ ( ~ ) )  
part cancel on the left hand side of the sum of (IOU) and ( lob) .  For an unequal number of 
type I and type II configurations a net contribution proportional to ( F A ( k )  - FB(k)) remains. 

The contribution FA@) - FB@) is proportional to twice the imaginary part of the 
structure factor of a layer. While the perfect lattice has systematic absences for all Bragg 
reflections with FA@) + Fg(k) = 0, the contribution proportional to FA@) - F B ( ~ )  will in 
general not be equal to zero. Thus as a result of the difference contribution of the structure 
factors of the layer a non-zero Bragg intensity may be obtained for Bragg reflections with 
systematic absences in the perfect crystal. 

4. The effect of partial dislocations on B r a g  intensities in Ni,Sn 

In order to illustrate the above discussion an example is investigated. The structure chosen 
here for illustration is the hexagonal NisSn Structure with the space group PQlmmc. This 
arrangement of atoms within the unit cell is il1u:trated in figures 5 and 6.  The lattice 
parameters (Pearson 1141) are given as a = 5.386 A and c = 4.243 A. The position of the 
Sn atoms is fixed at (4, f ,  4) and (3.4, t ) .  The six Ni positions within the unit cell are 
determined by one positionaI parameter x ~ i  with XN~ Y 2. 

Figure 5. Crystollognphic smcture of NbSn. (a) shows the three dimensional unit cell of 
NirSn with atoms in the A and B layers at L = f and z = f .  respectively. The plane with 
z = f contains the point of inversion symmetry (4, f, f) and this plane is also indicated in (a). 
(b) and (c )  show cuts through the unit cell for constant values of z. The A plane (obtained for 
L = i) is shown in (b), while the atom positions in Ule B plane ( z  = :) are shown in (e).  

P i p  6. Position of atoms in the A plane 
showing four unit cells. The Ni atoms are 
amnged in equilated triangles. One triangle 
(full line) is located within a unit cell, while the 
second triangle (dotted line) connects Ni atoms 
in different unit cells. The crystallographic 
positions of the Ni atoms are characterized by 
a free parameter x. For the special choice of 
x = a the two triangles are of equal size, 
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The structure of Ni3Sn consists of a sequence of A and B layers. Both layers are 
connected by inversion symmetry to one another with the centre of inversion being the 
origin and the point (0.5,0.5,0.5) within the unit cell. As a result of the inversion symmetry 
the structure factor of the unit cell is a real entity. 

For this structure a full dislocation with a Burgers vector (O,O, 1) may dissociate 
into two partial dislocations according to (0,O. 1) = bl + bz with bl = $(-2,2,3) 
and 62 = i ( 2 ,  -2,3). According to the Frank criterion this dissociation is energetically 
favourable. As noted above, for the discussion here bl and bz may be considered to be 
the inverse of one another. Thus by using (8) and denoting the layer structure factors by 
F A @ )  and F&) for A and B layers, respectively, one may obtain for a crystal with partial 
dislocation induced stacking faults 

The effect of the displacements is essentially to project down an A (B) layer onto a B (A) 
layer and translate it  by &(f, -4,O) within the B (A) layer. The arrangement of atoms 
is depicted in figures 7 and 8. It is noticeable that the projection of one layer onto the 
neighbouring one may result in an almost perfect match (figures 7(a) and 8(b)) while for a 
layer translated in the opposite direction the translated atoms occupy intermediate positions 
within the plane. Thus one may set 

FA(k)  2: exp(ik * b,)FB(k) ( 1 2 4  

F E @ )  2: exp(-ik .bl)F~(k). (12b) 

Equation (12) becomes an identity for x = 2, while for positional values of the Ni atom 
close to this value the above equivalence is only fulfilled approximately (see figure 8(b)). 
Using (12) the identity 

(-1 +cos(k -b))(F~(k) + FB(~)) = isin(k .b)(F~(k) - F&)) (13) 

may be obtained. 

Figure I. Effecl of the partial dislocuion vectarb~, (a) shows the B layer projected down onto 
the A layer. The tmslations of the projected atom within the plane are indicated by the mows. 
The effect o f h  far M A layer projected down onto a B layer with subsequent fnnslation within 
this layer is shown in (b) .  
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. .  . 
Flgurc 8. (a)  shows a projection of n B layer onto an A layer using the vector bz with the 
arrows indicating the Vanslarions within the A plane. In (b)  the equivalent projection is shown 
for an A layer onto a B layer. The positional parameter x of the Ni atoms has been changed 
to a value of x = 0.82 in ( b )  in order to show that for x value with x # 2 the projected and 
translated Ni atom positions do not superimpose onto lk Ni atom positions of h e  layer onto 
which the projection was canid  out. 

Inserting (12) into (1 1) results in an average structure factor of the unit cell given by 

&er&) = FA@) + FB@) + sin(k .b)(F~(k) - F d k ) ) .  (14) 

The intensity of a Bragg reflection is determined by the square of the modulus, resulting in 
an intensity proportional to 

FA@) + Mk)Iz  +4ipsin(k - ~ I ) ( F A ( ~ )  + FB(~))(FA(~) - FB(~)) 
+4pZsin2(k -bl)lF~(k) - F~(k)l’. (15) 

As seen in (14) it is the imaginary part of the layer structure factor that determines 
additional terms for the average structure factor. In deriving (14) use has been made 
of the centrosymmetry of the Ni& structure by using F A @ )  = FE@)*. However, due to 
(13) no additional Bragg reflections occur for NiySn. Using (13) the intensity is given by 

(1 - 4p(l -COS@ .ai)) +4p2(1 -COS& -bi)’)IFA(k) f h ( k ) l 2 .  (16) 

The scattered intensity of a crystal with stacking faults induced by partial dislocations is 
proportional to the structure factor of the perfect crystal combined with a modulation of the 
scaling factor. This modulation is brought about because of the presence of the displaced 
atoms within the average unit cell. 

5. Conclusions 

An analysis has been given of the effect of partial dislocations and the resulting stacking 
faults on the average structure factor of the unit cell. It has been shown that a systematic 
change of the intensity of Bragg reflections may occur. The changes include the modulation 
of the intensities of Bragg reflections with a non-zero structure. factor for the ideal structure 
as well as the possibility of non-zero intensities for systematic absences. 

The example of Ni3Sn has been considered in some detail. It was demonstrated that 
at least for this crystallographic sfructure the effect of stacking faults may result in the 
Occurrence of additional atoms at intermediate atomic positions within the average unit cell. 
The analysis as given here applies equally well for neutron as well as x-ray scattering. 
The results of the present analysis will be tested by experiment and the results published 
elsewhere. 
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